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In order to more accurately find the Mohr-Coulomb failure 
envelope, differential calculus is used to explicitly find the 
angle of internal friction and the cohesion of a fictional 
material. An iterative method for solving for the failure 
envelope is explored using MATLAB. To illustrate the explicit 
method a problem containing only two stress samples is 
completed. Eventually, the iterative approximation method is 
revealed to be a more preferable and realistic approach when 
solving for the failure envelope due to its scalability, speed and 
acceptable accuracy. To test the program, six sample datasets 
are processed and the results are used to further explore the 
uses and properties of the Mohr-Coulomb failure envelope.

The Mohr-Coulomb failure envelope describes how materials 
behave under stress. Most materials follow the Mohr-Coulomb 
failure envelope for at least part of their failure envelope, 
though brittle materials such as rock and concrete are more 
accurately described by it. The failure envelope itself is 
described by the relationship of the shear strength of the 
material and the amount of normal stress being applied. To 
obtain a failure envelope for a material Mohr's Circles are 
often plotted and then the failure envelope is determined as 
the line most tangent to the available Mohr's Circles (Figure 
01). The goal of this project is to develop a method that 
removes the need for graphical approximation of the failure 
envelope and to provide a method that can arrive at the most 
accurate failure envelope possible when given large amounts 
of variable, non-ideal data. 

First, differential calculus is used to find the exact line tangent 
to two individual Mohr's Circles. This is referred to as the 
explicit method. The second method takes advantages of the 
ability of computers to do simple mathematical operations 
quickly and uses iterative approximation in MATLAB and is 
referred to as the iterative method. The ultimate goal is to 
generate a method that is accurate, fast, and can perform 
approximations for large volumes of data.

Background

Abstract

Methods

To evaluate the line tangent to two Mohr's circles, two 
continuous functions are constructed by using two samples of 
stress data. This is done by recognizing the relationship 
between the principal stresses and Mohr's Circle.

Explicit Solution
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After constructing continuous functions representing each 
Mohr's Circle (referred to as f(x)  and g(x)), they are each 
differentiated. In this example, σ3 is 1 and 4 and σ1 is 3 and 8. 
Two new x-values are introduced which represent where the 
point of tangency is on each Mohr's circle, xf  and xg.  The 
functions are set equal to one another and either xf  or xg  is 
solved for. This shows where the slope of each circle is 
identical.
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The value of xf represents the x-value on the Mohr's 
Circle f(xf) where the slope of the line tangent to it at 
that point is also tangent to the Mohr's circle g(xg). 
Using this point we can find the slope at f'(xf) and a 
corresponding y-value at f(xf).
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To find the angle of internal friction (φ) trigonometry is used 
(Figure 02). The cohesion (c) of the material is the y-intercept.
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The key to this method is to recognize that the angle θ in each 
Mohr's Circle will always be equal when a line is drawn from 
the centroid of the circle to the point of tangency on each 
Mohr's Circle (Figure 03). When constraints have been put in 
place to force it so that the second stress pair will always have 
a larger differential stress and have both σ3 and σ1 values that 
are greater than those in the first stress pair, the y-intercept of 
the set of points of tangency that are on both half-circles for 
the same angle θ will be greatest when the most optimal pair 
is found (Figure 04). Using this knowledge, it is then possible 
to divide the circle into increments and test each set of 
dividing points to find the maximum y-intercept. This is most 
easily performed in a mathematical programming environment 
such as MATLAB.

Iterative Solution

To test the implementation of the iterative solution six sample 
datasets were run through the solver to generate cohesion (c), 
and angle of internal friction (φ) values. For this analysis, an 
aggregate of data on the Dunham dolomite, Solenhofen 
limestone, Mizuho trachyte, Shirahama sandstone, KTB 
amphibolite, and an unnamed marble was used from Al-Ajmi 
(2006). Only data points where σ2=σ3 were used.
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The explicit method is time consuming and difficult compared 
to the iterative method. The iterative method allows for the 
processing of large amounts of stress data in a short amount 
of time and provides an adequate amount of accuracy to be 
confident in the determined values for the cohesion and angle 
of internal friction. Due to the reality that the most optimal 
failure envelope will be found when larger amounts of stress 
samples are taken and all of the combinations of failure 
envelopes are averaged to find the best fit failure envelope, 
the scalability of the iterative approximation method makes it 
the clear choice for nearly all situations.

Comparison of the Solutions
Figure 01:  An idealized Mohr-Coulomb failure envelope (blue line) for three Mohr's 
Circles (shown in red). The y-intercept of the failure envelope identifies the cohesion (c) 
of the material and the slope of the line (φ) indicates the angle of internal friction.
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Figure 02: Two Mohr's Circles where σ3 is 1 and 4 and σ1 is 3 and 8. Indicated is where 
x=7/4. This shows where the point of tangency is on the first Mohr's circle. At this point, 
the line tangent to the first Mohr's circle is also tangent to the second Mohr's circle.
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Figure 03:  Using the same Mohr's Circles from the explicit example this diagram 
indicates that the angle formed by a line from the centroid of the circle to the point of 
tangency will be identical when the optimal failure envelope is found. The y-intercept will 
be at its maximum at this point.

µ µ

Figure 04:  The relationship between the change in the y-intercept and the angle θ  is 
graphically represented to show that it crosses the x-axis at approximately 104°. This is 
the most optimal angle of θ  in both Mohr's Circles (in this case for those in the 
examples). A graph such as this can be generated for any two Mohr's Circles.
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Figure 05:  Mohr-Coulomb failure envelopes for the Dunham dolomite, Solenhofen 
limestone, Mizuho trachyte, Shirahama sandstone, KTB amphibolite, and an unnamed 
marble approximated by the iterative method.

Since the Mohr-Coulomb failure criterion ignores the effects of 
the intermediate principal stress (σ2), Colmenares and Zoback 
(2002) note that it makes more accurate predictions for 
materials that do not have σ2 dependent failure. It is important 
to consider that the Mohr-Coulomb failure envelope only 
represents a portion of the failure envelope which often curves 
downward as it approaches σn=0 from the right and lowers its 
slope for high values of σn  (Figure 07). The Mohr-Coulomb 
failure envelope most accurately describes the region between 
these two graphical features.

Discussion

Table 01:  Approximated values using the Mohr-Coulomb failure envelope to find the 
cohesion and angle of internal friction for the six sample data sets seen in Figure 01. 
Values for the Dunham dolomite, Solenhofen limestone, and KTB amphibolite are close 
matches with approximations made by Colmenares and Zoback (2002).

Dunham 
dolomite

Solenhofen 
limestone

Mizuho 
trachyte

Shirahama 
sandstone

KTB 
amphibolite

marble

c  (MPa) 61.53383 120.66708 25.54780 39.57955 71.05321 15.04539

φ (°) 56.44541 23.00197 52.49628 27.79034 71.81827 47.14121

The iterative approximation method produces similar results to 
those made by Colmenares and Zoback (2002) for the 
Dunham dolomite, Solenhofen limestone, and KTB 
amphibolite. Comparing values from the Mogi-Coulomb 
criterion using equations from Al-Ajmi (2006) to relate the Mogi 
parameters a  and b  to c  and φ  showed that they both 
predicted similar values for the Solenhofen limestone and 
Shirahama sandstone. 
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The cohesion values predicted by the Mohr-Coulomb 
envelope were typically higher than expected which is a result 
of the slight curving downward that the failure envelope 
sometimes exhibits as it approaches tension (Figure 07). The 
iterative approximation method of the Mohr-Coulomb failure 
envelope is a fast, easy way to obtain cohesion and angle of 
internal friction values for a material that fractures with minimal 
respect to the intermediate principal stress and that has 
triaxial test data with varying confining stress.

Figure 07:  A hypothetical failure envelope for the Dunham dolomite showing its 
tendency to curve downward as it approaches tension and the leveling off that occurs 
under extremely high stress. The Mohr-Coulomb failure envelope most accurately 
predicts the region between these two features.

Test data is obtained by applying stress to a sample of the 
material in question until the sample fails or fractures (Figure 
05). Numerous samples can be run at varying confining stress 
values to generate a set of triaxial data.

Obtaining Data

Figure 05: Two rock samples used for triaxial tests showing the sample prior to testing 
and after (courtesy of Kleinfelder, Inc.). The first sample is a Granite and the second is a 
Micrite. Both show fracturing indicating that they had exceeded their failure envelope.
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