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Abstract

In order to more accurately find the Mohr-Coulomb failure envelope, differential calculus is

used to find the angle of internal friction and the cohesion of a material. Further methods for

solving for the failure envelope are explored using iterative methods in MATLAB. Determining

an accurate failure envelope is important to risk assessment, engineering geology and a variety

of other disciplines. A comparison of the two primary methods of explicit differential calculus

and iterative approximation is discussed. In order to illustrate the explicit method a simple

problem containing only two stress samples is completed. The iterative method is revealed to

be a more preferable and realistic approach when approximating the failure envelope due to its

scalability, speed and acceptable accuracy. Using the automation of the iterative approximation

method it is possible to solve for best-fit failure envelopes for a large volume of data which could

prove useful when assessing the potential failure of slopes and faults.
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1 Introduction

1.1 Overview and Explanation of the Problem

Given two Mohr’s circles, calculate the exact failure envelope to reveal the cohesion and the angle
of internal friction of the sampled material. In the following text, a pair of principal stress values
(σ3, σ1) is referred to simply as a “stress sample”. Being able to solve for the exact failure envelope
for two stress samples allows for the calculation of a failure envelope for an infinite amount of
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stress samples. When calculating a failure envelope for more than two stress samples, the failure
envelope becomes a “best fit” case where the cohesion (c) and angle of internal friction (φ) for every
combination of two pairs of stress samples is taken and averaged. For the intents and purposes of
this text, all examples will focus on solutions where only two stress samples are taken into account.

Mohr’s circles can be displayed in a traditional 2-dimensional Cartesian coordinate system by
considering the relationship of σ3 and σ1 to the radius of the circle and its centroid. Using the
formula for a circle (Equation 1) a formula can be created for each stress sample in terms of their
principal stress values. The Mohr Circle will always be on on the x-axis so b will always be equal to
0.

(x − a)2 + (y − b)2 = r2 (1)

r =
1

2
(σ1 − σ3)

a = r + σ3

Substitute into the equation for a circle and solve for positive values of y to arrive at the equation
for a stress sample that represents one Mohr Circle (Equation 2).

[x − (σ3 +
1

2
(σ1 − σ3)]

2 + y2 = [
1

2
(σ1 − σ3)]

2

y =

√

[
1

2
(σ1 − σ3)]2 − [x − (σ3 +

1

2
(σ1 − σ3))]2 (2)

It is much easier to express the equations in terms of σ3 and σ1, so when the normal and shear
stress along with an angle (σn, σs and θ) are available they should be rearranged into terms of σ3

and σ1 using equations 3 and 4. These equations assume that 2θ is being measured from the centroid
of the circle in a counter-clockwise manner.

σ3 = σn −
1

σs

tan 2θ − σs

1

sin 2θ
(3)

σ1 = σn −
1

σs

tan 2θ + σs

1

sin 2θ
(4)

1.2 Illustration and a Simplified Example

Shown on Figure 1 is a failure envelope and labels indicating that the y-intercept of the failure
envelope is the cohesion of the material. The angle of internal friction is also shown and is identified
as the angle formed between a horizontal line and the failure envelope.

Using the aforementioned equation (Equation 1) and two hypothetical stress samples of (σ3 = 1,
σ1 = 3) and (σ3 = 4, σ1 = 8) two Mohr’s circles are constructed.

y1 =

√

(
1

2
(3 − 1))2 − (x − (1 +

1

2
(3 − 1)))2

y1 =
√

1 − (x − 2)2 (5)

y2 =

√

(
1

2
(8 − 4))2 − (x − (4 +

1

2
(8 − 4)))2

y2 =
√

4 − (x − 6)2 (6)

The relationship of the failure envelope to the two Mohr’s circles can be described as a line that
is tangent to both of the Mohr’s circles (Figure 1). The line is unique given the constraints that
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Figure 1: Simplified example identifying that the y-intercept of the failure envelope is the cohesion
(c) of the material and that the angle of internal friction (φ) is the angle formed between the line
tangent to both Mohr Circles and a horizontal line.

• Any circle with a larger differential stress be located further along the x-axis.

• Only values in the first quadrant are considered.

Being able to confidently solve for an accurate failure envelope is important because it can reveal
how cohesive the sampled material is, how much stress it can withstand before failure, and other
properties of the material being examined. Each of the previously mentioned pieces of data are
important in risk assessment, engineering geology and a variety of other disciplines.

2 Explicit Solution to the Coulomb Failure Envelope

2.1 Method Accompanied by an Example

Finding the failure envelope can be done using differential calculus once two half-circles are con-
structed since they are continuous functions. The method can be time consuming and difficult
and as a result poses formidable challenges to automation in a computational environment such
as MATLAB. Other methods that were developed with automation in mind are discussed in later
sections.

To find the line that is tangent to both half-circles, at least one point of tangency on either half-
circle must be obtained. Typically, the stress pairs will be under certain constraints that guarantee
that the first circle (y1) must be smaller than the second (y2) (a greater differential stress) and that
neither σ3 or σ1 from y2 can be larger than σ3 or σ1 from y1. Due to these constraints, it is usually
simpler to solve for the point of tangency on the smaller circle. The derivative of the function that
represents the half-circle that was chosen will provide the instantaneous slope at any given value of
x, thus it is unnecessary to calculate a corresponding point on the second circle and solve for the
slope.

In order to setup the problem, two theoretical coordinate sets are identified as (xf , f(xf )) and
(xg, g(xg)). These two points represent the points of tangency on the two half-circles. To solve for
the failure envelope explicitly, the equation for each circle must first be differentiated in terms of its
corresponding point of tangency.

f(x) = y1

g(x) = y2

f(x) =
√

1 − (x − 2)2
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f ′(xf ) =
−(xf − 2)

√

−x2

f + 4xf − 3

g(x) =
√

4 − (x − 6)2

g′(xg) =
−(xg − 6)

√

−x2
g + 12xg − 32

The standard form for the derivative of the equation of the half-circle can be expressed as seen
in Equation 7.

h(x) =
√

c − (x − d)2

h′(x) =
−(x − d)

√

−x2 + 2dx − (d2 − c)
(7)

The first derivative of a function describes the slope of the function, so to find where the slope
of each half-circle is equivalent the two equations are set equal to eachother and solved for xf and
xg. This is most easily done using an algebraic solver such as the solve() function available on the
TI-89 calculator or the solve() function available in MATLAB’s symbolic math toolbox.

f ′(xf ) = g′(xg)

−(xf − 2)
√

−x2

f + 4xf − 3
=

−(xg − 6)
√

−x2
g + 12xg − 32

xf =
(xg − 2)

2

xf =
−(xg − 10)

2

xg = 2(xf + 1)

xg = −2(xf − 5)

Identifying that the slope of the failure envelope will be equal to either f ′(xf ) or g′(xg), choose
either f ′(xf ) or g′(xg) and set it equal to the slope m. In this example, f ′(xf ) was chosen.

m =
g(xg) − f(xf )

xg − xf

f ′(xf ) = m

−(xf − 2)
√

−x2

f + 4xf − 3
=

g(xg) − f(xf )

xg − xf

At this point another decision has to be made. Either all xf have to be replaced in terms of xg or
vice versa. This example replaces all xg in terms of xf . Either value for xf or xg can be substituted
and the opposite solved for.

−(xf − 2)
√

−x2

f + 4xf − 3
=

√

4 − (xg − 6)2 −
√

1 − (xf − 2)2

2(xf + 1) − xf
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−(xf − 2)
√

−x2

f + 4xf − 3
=

√

4 − ((2(xf + 1)) − 6)2 −
√

1 − (xf − 2)2

2(xf + 1) − xf

xf =
7

4

The value of xf represents the x-value on the half-circle f(xf ) where the slope of the line tangent
to it at that point is also tangent to the half circle g(xg). Knowing the point of tangency on one of
the half-circles is enough to calculate the failure envelope since f ′(xf ) can be solved at xf to find
the slope (mc) of the tangent line and (since xf is an x-value) f(xf ) can be solved at xf to find a
corresponding y-value and thus provide an (x, y) coordinate. To calculate the failure envelope, find
the slope (mc) of the line using the value of f ′(xf ) at xf .

mc = f ′(
7

4
) =

−(7

4
− 2)

√

−(7

4
)2 + 4 7

4
− 3

=

√
15

15

Next, find a point along the line. Use the x-value (xf ) to find a corresponding y-value (f(xf )).

f(
7

4
) =

√

1 − (
7

4
− 2)2 =

√
15

4

(xf , f(xf )) = (
7

4
,

√
15

4
)

With the slope of the failure envelope and a point located on the failure envelope, use the point-
slope form for a linear equation to find the cohesion (y-intercept) and the equation for the failure
envelope.

yc − f(xf ) = mc(xc − xf )

yc −

√
15

4
=

√
15

15
(xc −

7

4
)

To find the cohesion (c) find the y-intercept of the equation.

yc =

√
15

15
(xc −

7

4
) +

√
15

4

yc =

√
15

15
xc +

−
√

15

15

7

4
+

√
15

4

c =
−
√

15

15

7

4
+

√
15

4
=

2
√

15

15

To find the angle of internal friction (φ) trigonometry is used (Figure 2). In the example
provided, the line is chosen as one that started at the y-intercept (0, c) and extended out 2 units
(Figure 2).

sin φ =
f(2) − c

2
=

4
√

15

15
− 2

√
15

15

2

φ = arcsin (
2
√

15

15

2
) = 14.9632◦
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Figure 2: Illustration indicating that the angle of internal friction (φ) can be found using simple
trigonometry. A vertical line is drawn from the y-intercept (c) out 2 units and then the value of the
function representing the internal friction is evaluated at x = 2. It is important to note that the
cohesion is subtracted from the value of the function at the chosen x-value.

2.2 Example MATLAB Function

To solve for the failure envelope explicitly as described above, the symbolic toolbox plugin for MAT-
LAB is necessary. Without this toolbox, the solve() and subs() functions will not be available.
The method works exactly as described previously. Note that the provided function is not a fully
working example, it only shows the code that actually solves for the failure envelope.

% Use the format for a circle

% (x-a)^2+(y-b)^2=r^2

% b will always be zero, a will

% be s3 + .5(s1-s3)

a_a = s3a + (1/2)*(s1a - s3a);

a_b = s3b + (1/2)*(s1b - s3b);

% r will be .5(s1-s3)

r_a = (1/2)*(s1a - s3a);

r_b = (1/2)*(s1b - s3b);

% put the equation together

syms xf;

syms xg;

% equation f(x)

fxf = sqrt(r_a^2 - (xf - a_a)^2);

% equation g(x)

gxg = sqrt(r_b^2 - (xg - a_b)^2);

% Differentiate each equation

% and solve for x_a (xf) and x_b (xg)

fxfp = diff(fxf);

gxgp = diff(gxg);

[xge] = solve(fxfp - gxgp, xg);

% fxfp = (gxg - fxf)/(xg - xf);

gxg2 = subs(gxg, xg, xge(1));
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% solve for xf; pt = point of tangency

% Uses solve() function in symbolic math toolbox

pt = solve(fxfp - (gxg2 - fxf)/(xge(1) - xf),xf);

% Calculate slope of line:

% put pt into xf in fxfp

m = subs(fxfp, xf, pt(1));

% point of tangency: at pt in fxf what is

% intercept

pty = subs(fxf, xf, pt(1));

% create equation of line using

% (pt,pty)=(h,k) with m as slope

% in form y-k=m(x-h)

syms x;

y = m * (x - pt) + pty;

% calculate cohesion c = (y-intercept)

c = simplify(subs(y, x, 0));

% calculate phi (angle of internal friction)

phical = subs(y, x, 2);

phi = asin((phical-c)/2)*180/pi;

2.3 Brief Summary and Other Notes

Explicitly solving for the failure envelope is difficult, time consuming and the solution provided above
for MATLAB is very unreliable. This is due to the limitations of the symbolic math toolbox. Other
methods for solving the complicated equation to find the value of xf or xg involve estimations by
graphing or using a separate function that estimates the intersections of two functions. When using
graphing estimations or intersect estimations, the accuracy of the result depends on the accuracy
of the x-value and y-value vectors; the accuracy of the computed failure envelope decreases as the
numeric size of each stress pair grows. This poses an issue for computing time and storage in memory
since, to obtain satisfactory accuracy, using intervals smaller than .01 is often necessary. Since these
vectors are duplicated, calculated and modified at multiple times in the method, memory quickly
runs out with problems that have stress pairs that exceed 60-80 units in differential stress.

3 An Alternative Solution to the Coulomb Failure Envelope

3.1 Recognizing a Key Relationship

The following method was developed by Elige Grant of CERI (Center for Earthquake Research and
Information) at the University of Memphis. This algorithm is much quicker than solving the problem
explicitly and maintains a more than satisfactory amount of accuracy. It also has no dependencies
on the symbolic math toolbox. While the answers are not exact in the sense that the explicit
method guarantees, they are still extremely accurate and consequently the algorithm is a viable and
recommended alternative to the explicit solution in nearly all situations.

The key to this method is to recognize that the angle θ in each half-circle will always be equal
when a line is drawn from the centroid of the circle to the point of tangency on each half-circle. A
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Figure 3: Identifying that the angle θ will be identical on each circle when the line tangent to both
half-circles is found allows for the use of an iterative algorithm that tests large numbers of possible
angles to find the highest cohesion value.

diagram shows this relationship based on the two stress pairs that were used to demonstrate the
technique of explicitly solving for the failure envelope (Figure 3).

Since the angle θ will be equal at the correct points of tangency, it is possible to approximate the
angle of θ where the points of tangency create the most optimal failure envelope. Since constraints
have been put in place to force it so that the second stress pair will always have a larger differential
stress and have both σ3 and σ1 values that are greater than those in the first stress pair, the y-
intercept of the set of points of tangency that are on both half-circles for the same angle θ will be
greatest when the most optimal pair is found.

Using this knowledge, it is then possible to divide the circle into increments and test each dividing
point to find its y-intercept. In the method provided as an example, the find_theta_range()

function divides the range it is given into 100 sections and returns the point-boundaries for the
most optimal range (the range that returns the highest y-intercept value). The accuracy of the
approximation will increase as the find_theta_range() function is called more often. Once the
maximum y-intercept is found, the points that yielded that y-intercept and the y-intercept itself are
enough to determine the slope of the failure envelope.

3.2 Implementation of Algorithm in MATLAB

The code provided below was written by Elige Grant and modified by Jesse Amundsen. It is not
meant to be used in its current state, as part of the functionality has been removed for simplicity.
The parts of the algorithm that remain are intended to illustrate the method.

function coulomb_approx

% Radius of Half-Circles

r1 = (1/2)*(s1a-s3a);

r2 = (1/2)*(s1b-s3b);

% Center of Half-Circles

c1 = s3a + r1;

c2 = s3b + r2;

% Initialize theta range between 0 and 180 degrees

theta1=0;

theta2=180;

8



% Zero in on theta over 10 iterations

for i = 1 : 10

% Function "find_theta_range" is located

% at the bottom of this script

[theta1,theta2] =

find_theta_range(theta1, theta2, c1, c2, r1, r2);

end

% Take average of final theta1 and theta2

theta = (theta1+theta2)/2;

% Define temp_theta, x1, x2, y1, and y2

temp_theta = theta*pi/180;

x1 = c1 + r1*cos(temp_theta);

y1 = r1*sin(temp_theta);

x2 = c2 + r2*cos(temp_theta);

y2 = r2*sin(temp_theta);

% Find temporary y-int vector based on current theta

slope = (y2 - y1)/(x2 - x1);

y_int = y1 - x1*slope;

function [new_theta1,new_theta2] = ...

find_theta_range(theta1, theta2, c1, c2, r1, r2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FIND BIGGEST Y-INT VALUE METHOD %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define increment in theta

delta_theta = (theta2-theta1)/100;

% Define max_y_int to be very large negative number

max_y_int = -1e6;

% Loop over all angles in range

% Exit loop when y-int values start to decrease - it means

% we have already found the best possible theta for

% this range/increment.

for i = 1 : 101

% Define temp_theta, x1, x2, y1, and y2

temp_theta = (theta1+(i-1)*delta_theta)*pi/180;

x1 = c1 + r1*cos(temp_theta);

y1 = r1*sin(temp_theta);

x2 = c2 + r2*cos(temp_theta);

y2 = r2*sin(temp_theta);

% Find temporary y-int vector based on current theta

temp_y_int = y1 - x1*(y2 - y1)/(x2 - x1);
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if max_y_int < temp_y_int

max_y_int = temp_y_int;

new_theta1=(theta1+(i-2)*delta_theta);

new_theta2=(theta1+(i)*delta_theta);

else

break;

end

end

return

4 Comparison of the Two Methods

Solving for the failure envelope explicitly is a much more mathematically elegant solution while
the iterative method of approximating the failure envelope is far more realistic from an algorithmic
perspective. In nearly all cases, the approximation made by the iterative method will fall well within
acceptable margins of error. If the calculation must be done by hand, the explicit method is favored
since it is unfeasible for a human to perform the iterative method. Yet, when we take into account
that most of the uses for calculating the failure envelope will involve many stress samples (more
than 2), it becomes clear that a computational solution is necessary.

While a working example of the explicit solution written in MATLAB was provided, the function
is plagued with issues and errors. The dependency on the symbolic math toolbox is unnecessary
and the solve() function within the toolbox often reports incorrect non-real answers. Explicitly
solving the problem also takes a longer time than the iterative method, which is equally as fast for
extremely large stress values. The clearest advantages to the iterative approximation method are
its speed and its consistency.

The explicit method may lose to the iterative approximation method in most categories, but it
is mathematically unbreakable in the sense that no matter what the stress values are, it will always
find a tangent line. To guarantee that the tangent line being solved for is the failure envelope, a
series of constraints is necessary no matter which method is chosen. Constraints are necessary for
any deployable solution that would solve many stress samples for an optimal failure envelope.

Due to the reality that the most optimal failure envelope will be found when larger amounts of
stress samples are considered, the scalability of the iterative approximation method makes it a clear
choice. Considering that the explicit method has the potential to cause the computing system to
run out of memory or return an incorrect x-value for the point of tangency the only realistic choice
for solving for the failure envelope is the iterative approximation method.
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